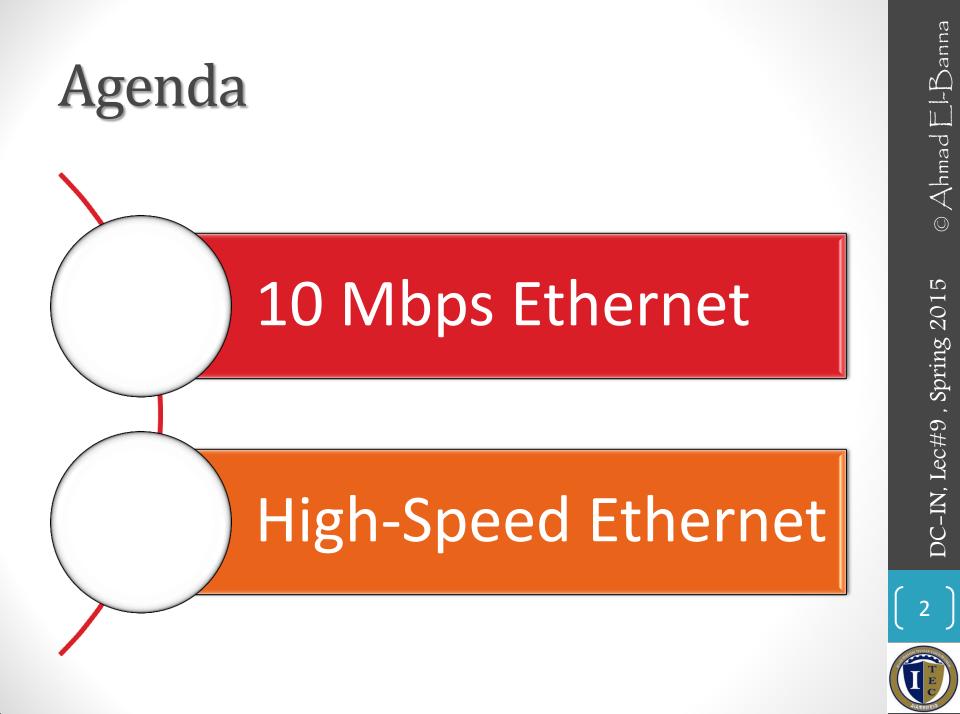
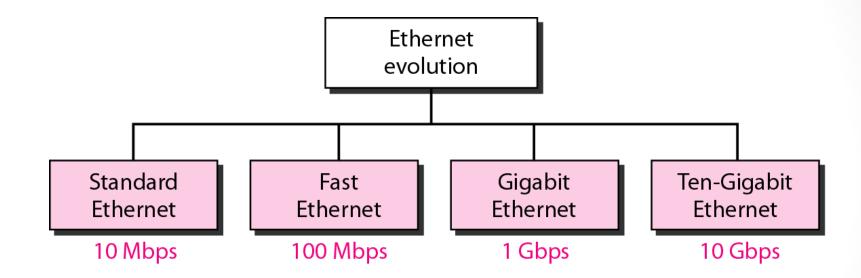


INTEGRATED TECHNICAL EDUCATION CLUSTER AT ALAMEERIA

E-626-A Data Communication and Industrial Networks (DC-IN)


Lecture #9 Ethernet

Instructor: Dr. Ahmad El-Banna)anna


Ahmad

 \bigcirc

Ethernet Evolution

10 MBPS ETHERNET

DC-IN, Lec#9, Spring 2015

)anna

© Ahmad

DC-IN, Lec#9, Spring 201

Ethernet

- Developed at PARC Palo Alto Research Center
- Inspired by earlier networks
- Named "ethernet" after "ether"
 - Name used by physicists in 1800s to refer to the "substance through which electromagnetic energy traveled"
 - Thought to be everywhere but invisible
 - Networks will be universal but invisible

© Ahmad El-Banna

Ethernet Precursors

- ALOHA packet radio network
 - Station may transmit frame at any time
 - Station listens for acknowledgement
 - time > 2 X propagation delay + fixed increment
 - If none, resend corrupted due to noise or collision
 - Simple, but limited to about 18% efficiency
- Slotted ALOHA
 - Time divided into organized slots equal to frame
 - Increases utilization to about 37% efficiency

Ethernet Precursors

- Carrier Sense Multiple Access (CSMA)
 - Before transmit, listen to medium (Carrier Sense) •
 - If medium idle, station transmits •
 - Wait for acknowledgement •
 - Time is longer than ALOHA to account for contention •
 - If no acknowledgement, listen and retransmit •
 - Utilization far exceeds ALOHA •
 - Longer frames and shorter propagation delay gives best utilization

DC-IN, Lec#9, Spring 201

Non-Persistent CSMA

- Listen to medium
- If medium is idle, transmit
- If medium is busy, wait an amount of time randomly drawn from a probability distribution, and retry
- Disadvantage
 - Channel usually remains idle following transmission because stations are waiting

1-Persistent CSMA

- Rules
 - If medium idle, transmit
 - If medium busy, listen until idle, then transmit immediately
- Selfish strategy
 - If two or more stations are waiting, collision is guaranteed

S

S

DC-IN, Lec#9, Spring 201

P-Persistent CSMA

- Rules
 - If medium idle, transmit with probability p or delay one time unit with probability (1-p)
 - If medium busy, listen until idle and repeat
 - If transmission is delayed one time unit, repeat from step 1
- How do we choose effective value of p?
 - Too high everyone tries to send
 - Too low waiting for nothing

© Ahmad El-Banna

DC-IN, Lec#9, Spring 2015

CSMA/CD (Ethernet)

Rules

- If medium is idle, transmit
- If medium is busy
 - Continue to listen until idle (1-persistent)
 - Transmit once idle but keep listening
- If collision detected while transmitting, stop
- After collision, wait a random amount of time, referred to as the "backoff", then start again

DC-IN, Lec#9, Spring 2015

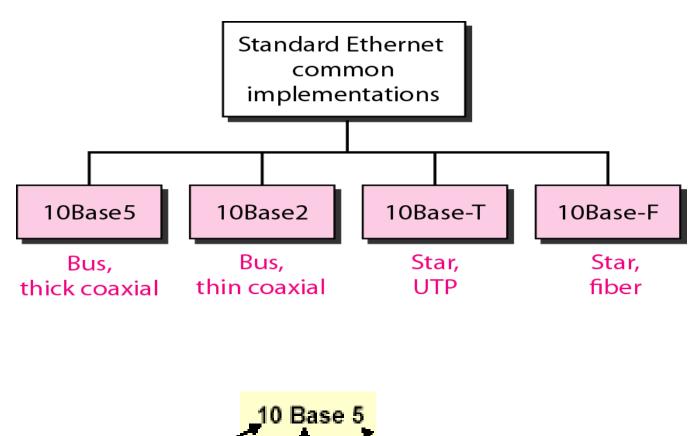
12

CSMA/CD Operation

А		B	c		D	
TIME t_0						
A's transmission	Ī					
C's transmission						
Signal on bus	$\mathbb{Z}\mathbb{Z}$					
TIME t_1						
A's transmission	727777	///////////////////////////////////////	$\overline{}$			
C's transmission				$\Xi \Xi$		
Signal on bus		///////////////////////////////////////	////	$\Box \Box$		
TIME t ₂						
A's transmission	777777	///////////////////////////////////////				
C's transmission				<u>n ni</u>	<u> </u>	
Signal on bus		///////	Z#XXXX	XXX/////	Z	
TIME t ₃						
A's transmission	ĒZ 7777	///////////////////////////////////////	//////	///////////////////////////////////////	77777	
C's transmission		\leq				
Signal on bus		×//////	//////	///////////////////////////////////////		

Collision Detection

- On baseband (co-axial cable) bus
 - Collision produces higher signal voltage
 - Detected if cable signal greater than station's
- On twisted pair (star topology)
 - Activity on more than one port is collision
 - Use special collision presence signal from hub until all incoming signals end



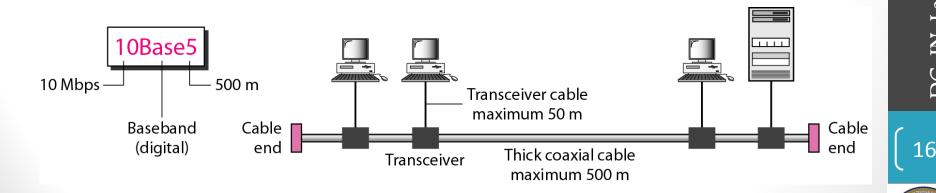
Ahmad El-Banna

802.3 Medium Notation

- Notation format: <data rate in Mbps>
 <signaling method>
 <maximum segment length in 100s of meters>
- e.g 10Base5 provides
 10 Mbps baseband, up to 500 meters
- T and F are used in place of segment length for twisted pair and fiber

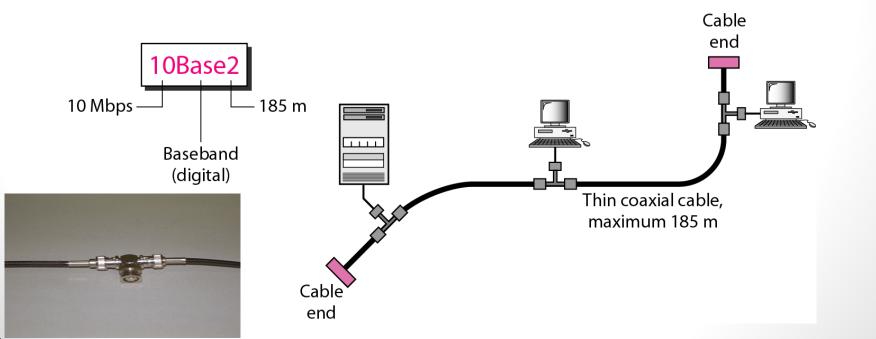
Ethernet Implementations

data rate baseband or cable type or length limit in Mbps broadband)anna


© Ahmad

15

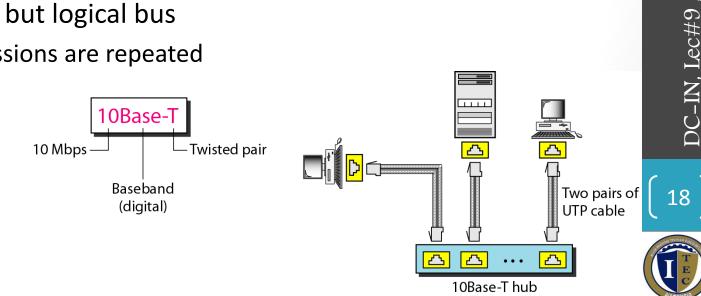
10Base5 "Thick Ethernet"


- Original 802.3 medium specification
- 50-Ω coax and Manchester signaling
- Segment length can be extended past 500m with repeaters
 - transparent at the MAC level
 - maximum of 4 allowed
- No looping allowed--one path between any two stations

C-IN, Lec#9

10Base2 "Thin Ethernet"

- Intended to provide lower-cost system for PC LANs
- Uses thinner cable and supports fewer taps than 10Base5
- Can combine 10BASE2 and 10BASE5 segments in the same network
 - but backbone must then be 10BASE5



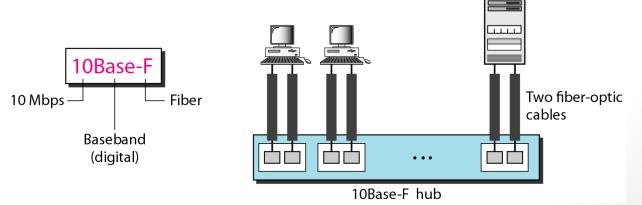
, Spring 201

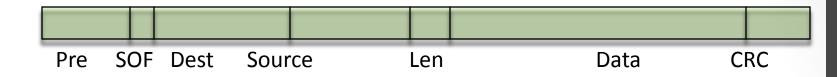
10BaseT

- Uses UTP
- Star-shaped topology is well-suited to existing wires terminating in a closet
- Stations attach to central multi-port repeater (hub) via two twisted pairs
- Hubs can be cascaded •
- Physical star, but logical bus
 - all transmissions are repeated

© Ahmad El-Banna

DC-IN, Lec#9, Spring 2015


- Only 802.3 broadband specification
- Uses 75-Ω CATV (cable TV quality) coax
- Maximum length of individual segment is 1800m
- Broadband is by nature analog, so analog encoding must be used (PSK)


10Base-F

- Standard includes 3 specifications
 - 10-BASE-FP: Passive star topology, up to 1km per segment
 - 10-BASE-FL: Point-to-point link connecting stations or repeaters up to 2km
 - 10-BASE-FB: Point-to-point backbone link connecting repeaters at up to 2km
- All specs use two fibers
 - one for transmission in each direction
- Manchester encoding
 - converted to optical signal elements

Ethernet Frame Format

- Preamble 7 byte pattern of 1's and 0's synchronization
- Start of Frame pattern 10101011
- Destination and source addresses 2 or 6 bytes (12 Hex)
- Data length field 2 byte value (<65536)
- Data field up to 1500 bytes
- Pad field if data field too short, padded up to 46 bytes
- Frame check sequence 32-bit CRC error check (4 bytes)

anna

Ahmad

Ethernet Maximum Distance

- 10Base5 with no more than four repeaters
 - 5 segments, max 500 m each
 - max 50 m long transceiver cables to two stations at the ends
 - Max distance station to station = 2600 m
- 10Base2 (Cheapernet)
 - max 200 m per segment, no transceivers, gives 1000 m max

Ethernet Address

- 48 bit integer (281 trillion possibilities)
- Assigned to interface card by manufacturer who purchases set of addresses from IEEE
- No two interfaces have same address, thus changing interface changes address
- Higher levels of software must accommodate address change

FAST ETHERNET

DC-IN, Lec#9, Spring 2015

)anna

© Ahmad

© Ahmad El-Banna

DC-IN, Lec#9, Spring 2015

- CSMA/CD operating at 100 Mbps
- Easy to integrate with existing systems
- 100BASE-X two simplex links b/w nodes
- Can use UTP (100BASE-TX) but requires two lines between stations
- Can use Fiber (100BASE-FX)

LO.

Fast Ethernet Configuration

- 100BASE-T uses star-wire topology
- All stations connected to central point using multiport repeater (broadcast method)
- Repeater, not stations, detects collisions and sends jam signal on all ports
- Repeaters connected with bridges

26

\odot Ahmad El-Banna

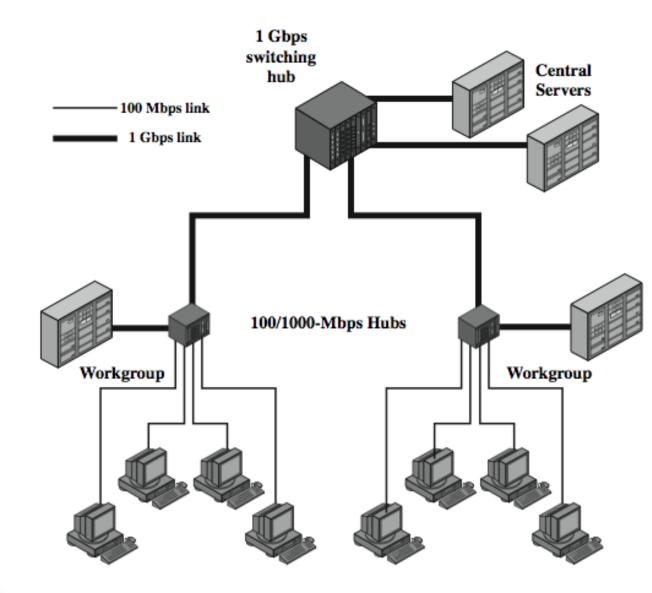
OC-IN, Lec#9, Spring 2015

- Traditional Ethernet is half-duplex
- Two links b/w stations allows full-duplex
- NICs must support full-duplex mode
- Switched hub must be used
 - determines path for frame
- No collisions ever occur

Mixed Ethernet

- Can mix 10-Mbps and 100-Mbps LANs
- Slow stations attach to 10-Mbps hubs
- Hubs connected to 100-Mbps hubs
- High-speed servers connected to 100-Mbps

LO.


, Spring 201

C-IN. Lec#9

- Gigabit Ethernet
 - Retains CSMA/CD protocol and Ethernet format, ensuring smooth upgrade path
 - Uses optical fiber over short distances
 - 1-Gbps switching hub provides backbone connectivity for central servers and high-speed workgroup hubs
 - Now moving to 10-Gbps, 40-Gbps, and even 100-Gbps backbones

Gigabet Ethernet Configuration

DC-IN, Lec#9, Spring 201 30

DC-IN, Lec#9, Spring 2015

- For more details, refer to:
 - Chapters 16, W. Stallings, Data and Computer Communications, 8th ed.
- The lecture is available online at:
- Lecture notes are found at:
 - <u>http://bu.edu.eg/staff/ahmad.elbanna-courses/12133</u>
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>